Skip to content

πŸ”Ž Exam 1 Formulas

Press Ctrl-D to bookmark this page. Feel free to download it, but please do not reupload. A downloadable Microsoft Word version of this formula sheet can be found at robmunger.com/1452share. The formulas for exam 2 can be found here.

Questions or comments? Please email robecon1452@gmail.com. Remember, your first reference is always the lectures and the homework.

L1 - Capital Allocation Line

Name
Equation
Example
Expected Return, E(rC)E(r_C)
E(rC)=rF+y(E(rP)βˆ’rF)E(r_C) = r_F + y (E(r_P)-r_F)
or
E(rC)=yE(rP)+(1βˆ’y)rFE(r_C) = y E(r_P) + (1-y) r_F
= .04 + .50*(.12-.04) = .08 or 8%
or
= (.12 * .50) + (.04 * .50) = 8%
Standard Deviation of Complete Port, σcσ_c
σc=yσpσ_c = y σ_p
= .20 * .50 = .10 or 10%
Variance, VarVar
Var=Οƒ2Var = Οƒ^2 = Οƒ^2
Var = 12%^2 = .0144
Standard Deviation, σσ
Οƒ=Var=Var12Οƒ = \sqrt{Var} = Var^{\frac{1}{2}}
Οƒ = .0144^.5 = 12%
Risk Premium
Risk Premium =E(rC)βˆ’rF= E(r_C)-r_F
= 12% - 2% = 10%
Sharpe Ratio, SS
S=E(r)βˆ’rFΟƒS = \frac{E(r)-r_F}{Οƒ}
= (.12-.04)/.20 = (8/20) = .40
Equation for CAL
E(rC)=rF+E(rP)βˆ’rFΟƒPΟƒCE(r_C) = r_F + \frac{E(r_P) - r_F}{Οƒ_P}Οƒ_C
Sharpe ratio = .8
E(r_C) = r_F + Sσ_C = 2% + .8 * 15% = 14%

References: 1 Jun 21.pptx and L1-Capital Allocation

rFr_F = Return of Risk Free Assets

rPr_P = Return of Portfolio of Risky Assets

rCr_C = Return of Complete Portfolio

E(rP)/E(rC)E(r_P) / E(r_C) = Expected Return of Risky/Complete Portfolio

Occasionally I use ErP/ErCEr_P/Er_C as shorthand for E(rP)/E(rC)E(r_P)/E(r_C)

yy = % of Portfolio in Risky Assets

1βˆ’y1-y = % in Risk-Free Assets

σ/σP/σCσ/σ_P/σ_C = Standard Deviation

SS = Sharpe Ratio

Variance = Standard Deviation^2

Standard Deviation = SQRT of Variance

L2 - Optimal Risky Portfolios

Name
Equation
Expected Return of 2+ risky assets
E(rp)=(w1Γ—Er1)+(w2Γ—Er2)...E(r_p) = (w_1 Γ— Er_1) + (w_2 Γ— Er_2) ...
Ex: Erp = 60%*11% + 40%*7% = 9.4%
Variance with 2 risky assets from Covariance
Var(rp)=w12Οƒ12+w22Οƒ22+2w1w2Cov1,2Var(r_p) = w_1^2 Οƒ_1^2 + w_2^2 Οƒ_2^2 + 2 w_1 w_2 \textcolor{red}{Cov_{1,2}}
Ex: Var = 60%^2 * 15%^2 + 40%^2 * 9%^2 + 2*60%*40%*.0027 = 0.010692
Variance with 2 risky assets from Correlation

Using Helper Formula β‘£, below, it follows that:
Var(rp)=w12Οƒ12+w22Οƒ22+2w1w2Οƒ1Οƒ2Corr1,2Var(r_p) = w_1^2 Οƒ_1^2 + w_2^2 Οƒ_2^2 + 2w_1 w_2 \textcolor{red}{Οƒ_1 Οƒ_2 Corr_{1,2}}
Ex: Var = 60%^2*15%^2 + 40%^2*9%^2 + 2*60%*40%*15%*9%*.2 = 0.010692

SD with 2 risky assets
CalcTake square root of variance to get Standard Deviation/Οƒ (See Helper Formula β‘‘, below).
ΟƒP=Var=Οƒ_P=\sqrt{Var}= 0.010692^.5 = 10.34%
If you have a target E(rPE(r_P)
w1=(E(rp)βˆ’E(r2))(E(r1)βˆ’E(r2))w2=1βˆ’w1w_1 = \frac{(E(r_p) - E(r_2))}{(E(r_1) - E(r_2))} \qquad w_2 = 1 - w_1
Correlation Coefficient (ρ1,2)(ρ_{1,2})
ρ1,2=Cov(r1,r2)Οƒ1Οƒ2=0.002667%Γ—19%=.2ρ_{1,2} = \frac{Cov(r_1,r_2)}{Οƒ_1Οƒ_2}=\frac{0.00266}{7\% Γ— 19\%}=.2
(ρ is always between -1 and 1)
Covariance
Cov(r1,r2)=ρ1,2Οƒ1Οƒ2=.2Γ—7%Γ—19%=0.00266\begin{aligned}Cov(r_1,r_2) &= ρ_{1,2}Οƒ_1Οƒ_2 \\ &= .2 Γ— 7\% Γ— 19\% = 0.00266\end{aligned}
Def of Covariance =E{[r1βˆ’E(r1)][r2βˆ’E(r2)]}=E\{\lbrack r_1-E(r_1)\rbrack\lbrack r_2-E(r_2)\rbrack\}
Utility Function
U=E(r)βˆ’12AΟƒ2U=E(r) - \frac{1}{2}AΟƒ^2
Capital Asset Pricing Model (CAPM)
ErP=rF+(BΓ—(ErMβˆ’rF))Er_P = r_F + (B Γ— (Er_M-r_F))

References: 2 Jun 26.pptx and L2-Optimal Risky Portfolio

w1w_1 = portion invested in asset 1,

w2=(1βˆ’w1)w_2 = (1- w_1) = portion invested in asset 2

EE = "Expected "

rr = return for asset

σσ = Standard Deviation

ρ1,2ρ_{1,2} = correlation between assets 1 and 2

pp = Portfolio of Risky Assets

rFr_F = risk-free rate

Ξ²Ξ² = Beta

Summary of Portfolio Theory


Expected Value of Return:
CAL:
E(rC)=rF+y(E(rP)βˆ’rF)E(r_C) = r_F + y(E(r_P) - r_F)
Two risky assets:
E(rp)=w1E(r1)+w2E (r2)E(r_p) = w_1E(r1) + w_2E\,(r_2)
Classic equation:
E(aX+bY)=a E(X)+b E(Y)E(aX + bY) = a\,E(X) + b\,E(Y)

Standard Deviation of Return (Risk):
CAL:
ΟƒC=yβ€…β€ŠΟƒPΟƒ_C = y \;Οƒ_P
Two risky assets:
ΟƒP=SQRT(Οƒ12 w12+Οƒ22 w22+2 w1 w2 Cov1,2)Οƒ_P = SQRT({Οƒ_1}^2\,{w_1}^2 + {Οƒ_2}^2\,{w_2}^2 + 2\,w_1\,w_2\,Cov_{1,2})
ΟƒP=SQRT(Οƒ12 w12+Οƒ22 w22+2 w1 w2 σ1 σ2 Corr1,2)Οƒ_P = SQRT({Οƒ_1}^2\,{w_1}^2 + {Οƒ_2}^2\,{w_2}^2 + 2\,w_1\,w_2\,Οƒ_1\,Οƒ_2\,Corr_{1,2})
Classic equation:
Var(aX+bY)=a2 Var(X)+b2 Var(Y)+2 a b Cov(X,Y)Var(aX + bY) = a^2\,Var(X) + b^2\,Var(Y) + 2\,a\,b\,Cov(X,Y)
* I wouldn't worry about using the two classic equations - but it's good to know the formulas Bruce used to come up with our equations.

Probability Helper Formulas:
Variance and Standard Deviation:
Οƒ=VarΒ andΒ Var=Οƒ2Οƒ = \sqrt{Var}\quad\text{ and }\quad Var = Οƒ^2
Covariance and Correlation:
ρ12=Cov(r1,r2)Οƒ1Οƒ2Β and ρ_{12}=\frac{Cov(r_1,r_2)}{Οƒ_1Οƒ_2}\quad\text{ and }
Cov(r1,r2)=ρ12Οƒ1Οƒ2\quad Cov(r_1,r_2)=ρ_{12}Οƒ_1Οƒ_2

L3-L4 - CAPM and EMH

Name
Equation
Capital Asset Pricing Model (CAPM)
ErP=rF+Ξ²(E(rM)βˆ’rF)Er_P = r_F + Ξ² (E(r_M)-r_F)
In EMH, Investors value a stock as the PDV of its future cash flows: (for stocks, cash flows = dividends)
PS=E(D1)(1+i)+E(D2)(1+i)2+E(D3)(1+i)3+β‹―P_{S} = \frac{E\left( D_{1} \right)}{(1 + i)} + \frac{E\left( D_{2} \right)}{(1 + i)^{2}} + \frac{E\left( D_{3} \right)}{(1 + i)^{3}} + \cdots
CAPM Notation
Associated Jargon
rF=5%r_F = 5\%
Risk free rate OR return on T-Bills OR return on short term government securities OR return on securities perceived to be risk-free
E(rS)=12%E(r_S) = 12\%
Expected (rate of) return offered by a specific security OR Expected rate of return *required by the market* for a specific portfolio (or stock) (E(ri)E(r_i) and E(rS)E(r_S) mean the same thing. 'i' just refers to a numbered security and 's' just refers to a specific stock.)
E(rS)βˆ’rF=7%E(r_S) - r_F = 7\%
or E(RS)E(R_S)
(Expected) risk premium for a specific security or portfolio
Note: I can get 5% by investing in risk-free assets, so I ignore the first 5% of the return from investing in a stock. I'm only interested in the 7% risk premium that I get above the risk-free rate.
Ξ²Ξ²
Beta (a measure of non-diversifiable risk)
rMr_M
The actual return on the market portfolio.
Note: We imagine a portfolio consisting of every single stock, bond, and other security in existence. We call this special portfolio "the market portfolio." rMr_M is the expected return of the market portfolio.
E(rM)E(r_M)
Expected return of the market OR Expected market return OR Expected return of/on the market portfolio
E(rM)βˆ’rFE(r_M) - r_F or E(RM)E(R_M)
(Expected) Risk Premium of the market OR (Expected) Risk Premium of the market portfolio
RS=rSβˆ’rFR_S = r_S - r_F
RM=rMβˆ’rFR_M = r_M - r_F
Excess Return of a security
Excess Return of the market (The textbook will use this notation.)

References: 3 Jul 1.pptx and L3-CAPM | 4 Jul 3.pptx and L4-EMH

L5 - Options

Name
Equation
Example
Intrinsic Value of a Call
CallΒ IV=Max(Sβˆ’K,0)\text{Call IV} = Max (S-K, 0)
PutΒ IVΒ =Max(Kβˆ’S,0)\text{Put IV }= Max (K-S, 0)
CallΒ IV=Max($52βˆ’$50,$0)=Max($2,$0)=$2\text{Call IV} \\= Max(\$52-\$50,\$0) \\ =Max(\$2,\$0) =\$2
P/L for Long Call or Put =IVβˆ’Pr= IV - Pr
P/L from Buying a Call =Max(Sβˆ’K,0)βˆ’Pr= Max(S-K,0) - Pr
P/L from Buying a Put =Max(Kβˆ’S,0)βˆ’Pr= Max (K-S, 0) - Pr
LongΒ Call=$2βˆ’$3=βˆ’$1\text{Long Call} \\=\$2-\$3=-\$1
LongΒ Put=$0βˆ’$3=βˆ’$3\text{Long Put} \\=\$0-\$3=-\$3
P/L Short Call or Put =βˆ’IV+Pr= - IV + Pr
P/L from Selling a Call =βˆ’Max(Sβˆ’K,0)+Pr= - Max (S-K, 0) + Pr
P/L from Selling a Put =βˆ’Max(Kβˆ’S,0)+Pr= - Max (K-S, 0) + Pr
ShortΒ Call=βˆ’$2+$3=$1\text{Short Call} \\=-\$2+\$3=\$1
ShortΒ Put=βˆ’$0+$3=$3\text{Short Put} \\=-\$0+\$3=\$3
Premium and Time Value
Time Value = Premium - Intrinsic Value
Premium = Intrinsic Value + Time Value
TV=$3βˆ’$2=$1\text{TV} \\= \$3 - \$2 = \$1
Calculate Premium
Premium = EV of the gain from an option or strategy
=14($0)+12($2)+14($8)=$3= \frac{1}{4}(\$0) + \frac{1}{2}(\$2) \\ + \frac{1}{4}(\$8) = \$3
Leverage
= (Share PriceΓ—100)/(PremiumΓ—100)
=$52Γ—100$3Γ—100=17.3:1= \frac{\$52Γ—100}{\$3Γ—100} = 17.3:1

References: 5 Jul 8.pptx and L5-Options